
Group Number 43Aryan Chopra (u20230086)
Sanyam (u20230141)
Lakhwinder Singh(u20230117)

A Project Overview

Debiasing Music
Recommendations

Popularity Bias in Music
Recommendation
Underrepresentation of Low-Stream
Artists

Problem Statement
Core Issue

Potential Applications

Fair Music Recommendation Systems
Artist Discovery Platforms
Personalized Playlists for Niche Interest

Limits Diversity
Hinders Discovery of New Talent
Reinforces “Rich-get-richer” Effect

Increased Visibility for Emerging Artists
Enhanced User Experience
Cultural Diversity in Digital Media

Problem Statement
Why

Important?

Potential Impact

Collaborative Filtering (CF)
Content-Based Filtering
(CBF)
Hybrid Models (CF + CBF)
Non-Negative Matrix
Factorization (NMF)

Overfocus on accuracy
Persistent popularity
bias
Lack of user-specific
fairness

→ Favors mainstream
artists
→ Limits diversity &
discovery

Existing Solutions Overview

Popularity Bias

Common Approaches

Limitations

Need for better
evaluation metrics

Fairness often
secondary

Limited
personalization of

diversity

Gaps

Psychological &
domain insights

Post-hoc reranking
(e.g., Smooth

XQuAD)

Fairness-aware
learning

Solutions & Our Focus

Empower low-
stream artists

Fairness integrated
in model

NMF + popularity-
aware reranking

Solutions & Our Focus

Balance accuracy
& diversity

S.
No Title Year

Journal/
Conference

Methods

1.
Managing Popularity
Bias in Recommender
Systems with
Personalized Re-ranking

2019 AAAI FLAIRS Conference
Personalized diversification
re-ranking (xQuAD, Smooth
xQuAD), post-processing

2.
Fairness and accuracy
in recommender
systems

2022
ACM Transactions on Recommender

Systems

Survey/Review of fairness-
aware algorithms, evaluation
frameworks

3.
Algorithms for non-
negative matrix
factorization

2001
NIPS 13 (Neural Information

Processing Systems)

Non-negative Matrix
Factorization (NMF)
algorithms

Literature Survey

Paper 1

Title:
 Managing Popularity Bias in Recommender Systems with Personalized Re-ranking

Source:
 AAAI FLAIRS Conference / arXiv:1901.07555

Authors:
 Mehdi Abdollahpouri, Robin Burke, Bamshad Mobasher

Methodology:
Personalized Re-ranking:
Uses xQuAD and Smooth xQuAD algorithms to balance accuracy and long-tail (niche) item exposure.
Post-processing step after standard collaborative filtering (CF) or matrix factorization (MF) recommendations.

Key Results:

Long-tail Coverage:
Significant increase in exposure for less popular (long-tail) items.

Trade-off:
Some reduction in accuracy for higher diversity, but overall user satisfaction and catalog coverage improved.

Limitations:
Focuses on item-side fairness (long-tail), not user-side or provider fairness.
Re-ranking is a post-processing step, not integrated into model training.
May require tuning to balance between accuracy and diversity for different application needs.
Let me know if you need this in even more compact form for a slide, or want a table version!
Answer from Perplexity: pplx.ai/share

Paper 2

Title:
 Fairness and Accuracy in Recommender Systems

Source:
 ACM Transactions on Recommender Systems

Authors:
 M.D. Ekstrand, H. Abdollahpouri, R. Burke, C. Cramer, B. Mobasher

Methodology:

Comprehensive Survey:
Reviews definitions and measurements of fairness in recommender systems (user-side, item-side,
provider-side).
Analyzes algorithmic approaches: post-processing, in-processing, and pre-processing debiasing
methods.
Discusses trade-offs between fairness and accuracy, and the impact of different fairness metrics (e.g.,
demographic parity, equalized odds).

Evaluation:
Presents frameworks and metrics for assessing both fairness and accuracy in various real-world
scenarios.

Key Results / Insights:
No universal definition of fairness; context and stakeholder priorities matter.
Improving fairness often reduces accuracy, and vice versa-trade-offs are inevitable.
Calls for context-sensitive, multi-stakeholder evaluation and transparent reporting of fairness impacts.

Limitations:
Survey/review paper-does not propose or empirically test a new algorithm.
Highlights complexity and subjectivity in defining and achieving fairness.
Stresses need for further research on adaptive, context-aware fairness strategies.

Paper 3

Title:
 Algorithms for Non-negative Matrix Factorization

Source:
 NIPS 13 (Neural Information Processing Systems), 2001

Authors:
 Daniel D. Lee, H. Sebastian Seung

Methodology:

Two Multiplicative Update Algorithms:
One minimizes squared error (Frobenius norm)
One minimizes generalized Kullback-Leibler divergence

Both use iterative multiplicative updates for factors W and H
Monotonic convergence proven using auxiliary functions (like EM algorithm)
Algorithms are simple to implement and guarantee local optimum

Key Results:
NMF produces parts-based, interpretable decompositions (unlike PCA)
Widely applicable for clustering, text mining, and image analysis
Demonstrated stable and monotonic convergence in experiments

Limitations:
Converges to local minima (not guaranteed global optimum)
Sensitive to initialization
Does not address regularization or sparsity (extensions required for those)

Analysis of Popularity Bias - Key Graphs and Insights

Algorithmic Influence and Mitigating Popularity Bias

We did not collect this dataset ourselves. It was
collected by Spotify Research from publicly
available Spotify playlists created by US users.
The data consists of anonymized playlist
information, including playlist titles, track lists
(with Spotify URIs, track names, and artist
names), and some basic playlist metadata.
Ethical considerations included the fact that
this data was derived from public playlists,
meaning users had implicitly agreed to some
level of public visibility. The dataset is massive,
containing 1 million playlists and over 2 million
unique tracks, resulting in millions of user-item
interactions (implicit feedback).

Million Playlist
Dataset (MPD)

We also did not collect this dataset. It was
compiled by its authors (available on Kaggle)
likely by gathering data from various music
sources or APIs. The nature of the dataset is
primarily track-level metadata and audio
features (like danceability, energy, loudness,
etc.), along with track names and artist names.
Ethical concerns would relate to the original
source of the data and ensuring proper
licensing for research use, which is typically
covered by public datasets on platforms like
Kaggle. The dataset contains over 28,000
tracks with around 30 features per track.

Music Dataset: 1950
to 2019 (Kaggle):

spotify-tracks(Kaggle)

We utilized a public dataset referred to in the code as
the Spotify Tracks Dataset, loaded from /kaggle/input/-
spotify-tracks-dataset/dataset.csv. This dataset serves

as the source for explicit item features, providing
detailed characteristics for a large collection of music

tracks. It contains metadata such as track ID, track
name, and artist name, along with various audio

features computed by Spotify. As seen in our code's
processing and output, key features extracted and

used from this dataset include 'popularity',
'duration_ms', 'danceability', 'energy', 'loudness',
'speechiness', 'acousticness', 'instrumentalness',

'liveness', 'valence', 'tempo', 'mode', and 'explicit'. This
rich set of 13 features is crucial for the Hybrid NCF

model to understand item characteristics and improve
recommendations, particularly for songs where
extensive user interaction data might be limited.

Dataset Overview
-We utilized a combination of publicly available
datasets and data we collected ourselves.

Public Datasets:

This dataset was collected by us from
real participants. We recruited 10
individuals to participate in a 7-day
study. Each day, our system provided
them with 10 song recommendations.
We collected their explicit feedback
on each recommended song (whether
they liked or disliked it).

Our User Study Data

Dataset Size
This dataset contains
approximately 10 users * 7 days
* 10 recommendations/day =
700 data points
(recommendation events), each
with associated feedback.

DATASET
OVERVIEW

SELF COLLECTED
DATA SET

We loaded the JSON slice files, extracted user (playlist) IDs and item (track) URIs. We then
created a mapping from original IDs/URIs to contiguous internal integer IDs for both users and
items. Finally, we constructed a sparse interaction matrix (CSR format) where entries
represent a user interacting with an item.

Features Preprocessing
MPD (from Kaggle dataset)

We loaded the CSV file. We identified the relevant feature columns (track_name, artist_name,
danceability, energy, etc.). We handled missing values by dropping rows with missing critical identifiers

(track_name, artist_name) and imputing numerical feature NaNs with 0 (a simple strategy for this
project). We performed scaling on the numerical features using StandardScaler to bring them to a

similar range, which is important for neural networks. For categorical features (like 'mode'), we mapped
them to integer IDs to be used in embedding layers within the NCF model. We also created a unique

item_uri for each item based on its name and artist to align with the MPD data.

track-spotify-dataset(from Kaggle Dataset)

We used a RandomForestClassifier to analyze feature importance. We trained
this classifier on a dataset of user-item pairs (sampled positive interactions
and sampled negative non-interactions) combined with the item features. The
importance scores from the RandomForest model indicated which features
were most predictive of an interaction. This analysis was primarily for
understanding which features were most correlated with engagement, rather
than for dimensionality reduction in the main NCF model. It confirmed that
features like 'popularity' (simulated) and audio features had varying degrees of
predictive power.

Feature Importance

Hybrid NCF (Neural Collaborative
Filtering)

Combines user-item interactions +
item features (audio, metadata)
Trained with Bayesian Personalized
Ranking (BPR) loss
Aims to balance relevance & diversity
in recommendations

NMF as base for learning latent user
preferences
Reranking module to boost niche
content
Explored TensorFlow implementation
for alternate modeling
Used for initial recommendation
generation

Methodology

Core Approach Models Used

Data Sparsity: Limited user-item
interactions
Cold Start: Recommending new or
niche content
Algorithmic Complexity: Balancing
fairness & accuracy
Compute intensive: Matrix factorization
and embedding calculations

Negative sampling for BPR training
Popularity-aware reranking to promote
niche artists
Scalable NMF and TensorFlow for
model design

Methodology

Challenges Faced Solutions Implemented

Very Low accuracy and
ranking metrics
Significant boost in
diversity

Reranking: None

Performance Metrics(During Training)

Takeaway

Results on Main MPD Test Set:
Hybrid NCF Model:

Reranking: Smooth Xquad

Performance Metrics(During Training)
Results on Main MPD Test Set:
Hybrid NCF Model:

This dataset was collected by us
from real participants. We recruited
10 individuals to participate in a 7-
day study. Each day, our system
provided them with 10 song
recommendations. We collected
their explicit feedback on each
recommended song (whether they
liked or disliked it).

Our User Study Data

We focused on getting genuine reactions
to the recommendations. Ethical
concerns were paramount: we obtained
informed consent from all participants,
clearly explaining the purpose of the
study and how their data would be used.
All collected data was anonymized to
protect participant privacy. The data
collected included the user ID
(anonymized), the recommended song
(URI, name, artist), and their binary
feedback (liked/disliked).

Data Collection
Considerations Dataset Size

This dataset contains
approximately 10 users * 7 days
* 10 recommendations/day =
700 data points
(recommendation events),
each with associated
feedback.

Real-World Model Evaluation
-We utilized a combination of publicly available datasets and data we collected ourselves.

Self-Collected Dataset

Reranking: Smooth Xquad

Performance Metrics(On Student Data)
Results on Main MPD Test Set:
Hybrid NCF Model:

Can be integrated with Plaksha’s
music or learning platforms
Personalized recommendations
for each user

Package as API or web app
Connect to Plaksha’s user data
Real-time recommendation
delivery

Large datasets: need for efficient
computation
Real-time performance for many
users
Continuous updates for new
songs/users

Ready for Deployment

Deployment Steps

Scalability Challenges

Deployability

Thank You!
We value your feedback and insights!

